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1. INTRODUCTION

The response of gun propellant to mechanical stress plays a critical role in the evolution of

pressure during the ballistic cycle. Stress communicated through the bed can produce projectile

motion', which can critically affect the early ignition conditions. If stress levels exceed critical values

grain fracture can result which produces unprogrammed surface area and results in an accelerated

pressurization. The sound speed (the propagation of a mechanical disturbance) within the granular

bed is also determined by the bed response2 '3 . Factors, such as the propellant impetus, flame

spreading, grain geometry, propellant burning rate, the ignition system, and many others interplay

to influence the pressurization rate during combustion. The more that is known about the nature of

the bed response, the more that will be understood about the interplay among the parameters.

Most of the testing done to determine the mechanical response of granular beds has been done

at low rates on conventional testers ' 5- 3 . Some explosive loading techniques have been employed

to increase the rate of testing and to simulate the loading profile believed to be experienced by the

bed during ignition7 . In all of these tests the problem of the bed interaction with the wall of the

chamber has always been difficult to address. In an earlier papere a special measurement arrangement

was designed to isolate the wall from influencing the force measurement on the bed. These tests were

conducted at higher rates (about 50/s) to more closely approach operational conditions, but the

measurements were limited to very low strains and impulsive loading profiles because of the drop

weight arrangement used to deliver the load. Results from those tests, however, seemed to indicate

that stress measurements were isolated from wall effects.

In the current study, investigations into the nature of the stress profile across the bed were

conducted. This required higher strains and more controlled strain rates than coul, be attained using

drop-weight loading, and necessitated the use of a device that could deliver a significantly higher

load. A conventional tester was used with a testing apparatus based on the design of the tester used

in Reference 8, but modified to include a measurement of the transmitted stress. This arrangement

permitted the investigation of the axial and radial stress profile across the bed.

2. EXPERIMENTAL PROCEDURE AND RESULTS

2.1 Description of the Tester. The bed tester is illustrated in Figure 1. It consists of a ram,

cylinder, and anvil which was used to compress the bed of granular propellant. The gage at the top

of the ram measured the force applied to the bed. The ram guide rested on the bed wall, kept the ram

shaft in the center of the bed, and helped to keep the applied strain uniform. The bed itself had a

.. . . .. .. .. . . . . ... . . . .. .. ..... . . . . . ... .. . = |



Applied Force Table 1. Propellant Grain DimensionsGage _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Gg Perforation

Ram Type Length Dia. Dia. Number
(mm) (mm) (mm)

Ram Guide JA2 14.91 9.89 0.84 7

M30 17.60 7.15 0.69 7

M43 13.75 8.28 0.33 19
Bed Wall

nominal length of 4 cm and adiameterof 8.29 cm

Propellant Bed (surface area of 53.9 cm2). The dimensions of the

teste-. era.'s are foundin Table 1. Thebottom of
Center Force the l.- d as supported by a second force gage at
Force Gage the center of the bed and by an annular steel

Guard Ring guard ring which had its top surface flush with

Transmitted the top of the gage. The second gage permitted

Force Gage measurement of the stress at the center of the bed

Figure 1. Schematic Diagram of the Bed Tester over an area of 5.07 cm2, about 10 percent of the

total bed area, while the ring supported the bal-
ance of the bed area. The second gage and the ring rested on a steel plate that was supported by a

third force gage. This gage was supported by the cross-head, as was the bed wall. This arrangement

permitted measurement of the stress transmitted through the bed, and, thereby, provided a measure

of the axial bed stress transmitted to the wall through shear. The temperature conditioned bed

assembly was removed from the conditioning chamber and placed on the cross-head of an Model T-"-

C Instron Tester and compressed by raising the crosshead. The displacement of the crosshead was

measured using a Linear Variable Differential Transformer.

The four channels of data (displacement, applied force, transmitted center force, and total

transmitted force) were recorded at 5-ms intervals at a strain rate of about 0.02 s1. Stress values were

calculated by dividing the measured forces by the corresponding areas.

Compliance measurements were performed and the tester- machine assembly was found to have

a linear stiffness of 45.7 kN/mm. The strain was calculated by correcting the displacement readings

for this compliance and dividing the corrected displacement by the initial bed height.
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Table 2. Nominal Percent Composition and Densities of Propellants

JA2 M3Q M43
Composition

Nitrocellulose (NC) 59 28 4
NC Nitration Level 13.1 12.6 12.6

Nitroglycerin (NG) 15 22
Nitroguanidine (NQ) 48
Ethyl Centralite (EC) 2
Diethylene Glycol Dinitrate 25
Akardit II I
RDX (Ground) 76.0
Cellulose Acetate Butyrate 12.0
Plasticizer 8

Densities

p. (g/cm 3) 1.58 1.66 1.66
p, (g/cm) 0.920 0.900 0.953

Tests were performed at bed temperatures of -32°C, 23°C, and 52°C using JA2, M30, and M43

propellants, whose formulations are listed in Table 2. The period of temperature conditioning was

selected based on cooling and heating experiments performed on propellant beds. It was found that

the center of the propellant bed reached the conditioning temperature in 120 minutes, when the

assembly shown in Figure 1 was placed in the conditioning chamber which was set to the desired

temperature. After conditioning, it was also found that the bed remains at the desired temperature

for 4.0 minutes before the ambient conditions begin to change the temperature around the bed. Where

ever possible three repetitions were performed for each test condition. The bed height of 4 cm

(nominal) was chosen based on the results of bed testing performed in Reference 8. In those tests

it was determined that beds of at least this height ,,ere required for grains of this size before the scatter

in the measurements was reduced to an acceptable level.

2.2 Test Results. Figure 2 shows the average results of the JA2 propellant bed tests. The applied,

center, and transmitted stress are presented as a function of strain at each of the three temperatures.

Figures 3 and 4 show the same information for M30 and M43, respectively. In every case, the applied

stress is somewhat larger than the transmitted stress, as expected, since the force transmitted to the

wall by the bed is not measured by the transmit -d force gage. The stress at the center of the bed

follows the same trends as the applied and transmitted stresses, but the magnitude of the stress has

some variability from propellant to propellant. For JA2 the center stress was significantly below the

3
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other two stresses at the high temperature and matched the transmitted stress at 23'C. For M30 the

center stress closely followed the applied stress in all cases, and for M43 the center sti again

matched the applied stress for high and ambient temperatures, with the center exceeding the applied

at 23'C. At -32°C sever fracture was recorded for M43 and the center stress followed the transmitted

stress closely in both magnitude and form. Figure 5 compares the applied stress at each temperature

for each of the propellants to show the effect of temperature on the bed response.

3. ANALYSIS

In all but a few cases the response of the propellant beds was measured until maximum loads were

experienced on the test frame. JA2, which is significantly softer than the other propellants, was tested

first and was not taken to maximum load until the low temperature response was measured. This is

the reasco, that the levels of stress are lower for JA2. Of particular interest in this study is the change

in bed response with increasing strain and decreasing porosity. This response determines the

stiffness of the bed (the bed modulus) and the sound speed (the propagation of a mechanical

disturbance) within the bed. The onset and the degree of fracture damage that the bed suffers also

affect the interior ballistic cycle. Each of these considerations is addressed foreach propellant below.

The modulus values were calculated by dividing the change in applied stress, Ac, , by the cor-

responding change in strain, Ac, over the interval between the succeeding points, i.e.

Aa
E - a (1)

Ac

When calculating modulus values care should be taken to realize what affect calculations have on

the resulting values. This modulus, for example, represents the stiffness of the bed when compact-

ing the entire bed and includes the effects of wall friction. If the transmitted stress were used, the

effects of wall friction would be removed, but the effective surface area of the bed is not clearly

defined because of reduced stress levels acting on the regions of the bed near the wall. One might

be tempted to average the two values. It is difficult to say what this would represent since the

distribution of force transmitted to the wall is not known. The stress values presented here were not

averaged. The choice of what modulus is used depends on the application.

The sound speed was calculated using the following propagation rate formula2

1 de, (2)
Ps d~s

6



where a is the applied intergranular stress, is the bed porosity, and p. is the theoretical maximum

density (TMD) of the propellant. The porosity is calculated from the strain, using the propellant TMD

and initial bulk density, p, and p, respectively, using the following relationship,

(E)= 1- (3)
p (l-E)

These densities are provided in Table 2.

3.1 JA2 Response Figures 2 and 6 show the relationships among the stress, strain, modulus,

sound speed, and porosity, as indicated in -he captions. The applied and transmitted stress at each

temperature closely followed each other in form and magnitude at each temperature, with the

transmitted stress always being lower than the applied. The stress measured at the center followed

the form of the other stresses, but the magnitude varied considerably, as shown in Figure 2. This may

be due to few numbers of grains in contact with the gage at the center. The JA2 grains are the largest

of the three propellants tested here and in other studies were shown produce much more variation than

smaller grains tested under similar conditions. At lower temperatures the value of the maximum

strain was reduced due to the increased stiffness of the bed. Modulus values were very low at high

temperature and much higher ancl more scattered at low temperature. Note that for the high tempera-

ture curve at high compression, where the porosity was below 0.1, the modulus began to increase

more rapidly than the linear extension of the curve would have predicted. This was the only case in

which this more rapid upswing was observed, and also the only one where the porosity had such low

values. These low porosity values may be artificially low due to propellant extrusion around the

edges of the ram (observed at high temperature for JA2), and errors in measurement of the initial

volume of the bed, both of which critically influence the magnitude of the porosity as it approaches

zero. The sound speed tracks the modulus values, as is expected from the equations. The scatter in

the modulus and velocity curves at low temperature indicated that rapid relaxation of the stress

occurred due to fracture or some other mechanism causing sudden fluctuation of stress.

Figure 7 shows photographs of typical damaged JA2 grains which provide evidence of the

deformation mode. The grains at 52C and 23°C deformed plastically. There was no indication of

fracture or tearing. The extreme softness of the high temperature grains allowed compaction to near

theoretical maximum density, and caused gross deformation as grains twisted around each other as

shown in Figure 7a. After compaction the grains were pressed into a "puck" which maintained shape

without ,,pport and was difficult to break apart. Plastic deformation of a much smaller degree

occurred at 23'C. No gross fracture was indicated in the stress-strain curve at low temperature.

7



However, as mentioned above the modulus curve ......

indicated fracture. This fracture is shown in

Figure 7c where the grains appear to have chipped

at stress concentration points within the bed. No

plastic deformation was noted. JA2 is known to

undergo a glass transition near -20'C (depending ~

on deformation rate), which explains the change tX

in response. The photographs show that JA2 pro-

pellant did not suffer much fracture damage in

the' e experiments. a. 52 'C

100-

52 u
*23 'C

S60- -32CT

'~40]

20*

0.0 0.1 0.2 0.3 0.4 0.5

Porosity b. 23 0 C

a. Bed Modulus vs Porosity

3001

-. 200] * 23*

E -32 OC
Ea

>a

0.0 0.1 0.2 0.3 0.4 0.5 c. -32 T
Porosity

b. Sound Speed vs Porosity Figure 7. Photographs of Damaged JA2

Figure 6. Bed Parameters for 1A2 Grains fromn the Compressed Bed



3.2 M30 Response. Figures 3 and 8 show the same relationships for M30 that were shown above

for JA2. The applied and transmitted stresses followed each other in the same relationship as

indicated for JA2. However, the center stress almost matched the applied stress in each case, which

may be the result of the smaller grains allowing a better statistical representation on the center portion

of the bed. At 52'C and 23*C the modulus and sound speed values for M30 were significantly higher

than for JA2. At -320C these values are much closer for the two propellants but the scatter was

different. JA2 began compaction with little scatter which grew as the porosity decreased. The scatter

in M30 began immediately upon compression, indicating an earlier onset of fracture damage.

Figure 9 shows the type of damage observed in the M30 beds. At the high temperature most

deformation was plastic, although some tearing also occurred. Since the strain level was significantly

less than for the JA2 propellant, less deformation was observed. At 23"C plastic deformation was

observed along with chipping and crushing of grains at the stress concentration sites near the ends

of the grain. Significant fracture occurred at low temperature. Most of the damaged grains were split,

as shown, but chipping and crushing were also observed with little or no plastic deformation

observed. This more gradual transition to fracture as the temperature was reduced, as compared to

JA2, is also reflected in results of single grain deformation experiments 2 . It should be noted that,

by far, most grains within the bed suffered very little or no apparent damage. The photographs show

the most damaged grains. Closed bomb testing will be done to provide overall evaluation of the

fracture damage of the propellant bed.

3.3 M143 Respon.i The same set of information provided above for JA2 and M30 propellants

is presented for M43 in Figures 4 and 10. Again the center stress closely followed the applied stress

at the higher temperatures, with the form of the transmitted stress curve the same as the applied, but

of lesser magnitude. At low temperature stress was relieved by fracture as can be seen by the sudden

drop in stress at fairly regular intervals. Note that there were corresponding drops in the center and

transmitted stresses, indicating that single events were responsible for the stress reduction. The

modulus and velocity curves show large scatter indicating that fracture was a major contributor to

the failure process at 230 C and 52°C, as well. No modulus (or sound speed) calculations were made

at -32°C. The stress vs strain curve indicated that fracture began almost immediately upon

compaction giving such calculations little value.

The photographs of damaged grains are presented in Figure 11. They show what was indicated

in the response curves. At the higher temperatures the grains were crushed, fractured and deformed.

At low temperature splitting, chipping and the production of small chards indicated that fracture had

9



become the main mode of failure. Note that little

plastic deformation was observed. Video tapes

were made of all bed tests and the low tempera-

ture M43 test produced popping sounds (like

popcorn popping-) that corresponded well to the

sudden reductions in magnitude found on the

stress curve.

3.4 Bc..jind Grain Mechanicil Properies. .

The uniaxial compressive mechanical response a 2'
a.20 0

100i

de -32 O Gal

60-

*~40'

0,
.20.3 0.4 0.5

Porosity

a. Bed Modulus vs Porosity b. 23 0C

4001

23 C

E 2001 -2'

0'

0.2 0.3 0.4 05

Porosity c. -32 0 C

b. Sound Speed vs Porosity Figure 9. Photographs of Damaged M30
Figure 8. Bed Parameters for M30 Grains from the Compressed Bed
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of these individual propellant grains is well....

known. Figure 12 shows the modulus vs tem-

perature for single grains undergoing uniaxial

compression 10-1'at the same temperatures used in

this study. For comparison, Figure 13 shows the

modulus of the propellant beds at the higher "

temperatures. In previous work', it was shown

that the grain response was reflected in the bed

response, i.e. stiffer grains produced stiffer beds.

a. 52 T

701

601 -52 -C
.23 C

3u 0

200

0.2 0.3 0.4 0.5

Porosity b. 23 0C

a. Bed Modulus vs Porosity

240-1

220- 52 C
2.3 C *

- 200-

.

160-iar

0.0.3 Po oiy0.4_ 0.5 c 3

b. Sound Spec~d vs Porosity Figure 11. Photographs of Damaged M43

Figure 10. Bed Faramneters for M43 Grains from the Compressed Bed



That same result is shown here as well. To better
6 understand the nature of this relationship, the bed

5-• 1A2

M0 moduli were averaged over the common porosity

4 •M43 values of the bed compaction tests (shaded area

3' in Figure 13) and plotted against the modulus val-

S 2 ues of the individual grains. Figure 14 shows this

I ' plot and demonstrates the strong correlation of

"---__ the grain and bed modulus over this porosity
0 i

-40 -20 0 20 40 60 range, irrespective of propellant type and tern-
Temperature (°C) perature. This result may be useful in predicting

Figure 12. Modulus vs Temperature for bed modulus values from individual grain re-

Individual Propellant Grains at 100 s- sponse measurements.

3.5 Stress Transmitted to the Bed Wall. The measurement of the stresses transmitted to the bed

wall is presented in Figure 15 for each of the propellants. A general observation is that as the applied

stress increased, the stress transmitted to the vall increased in proportion. Except for JA2 at low

temperature, the plots of this difference are near linear in each case indicating that the same

percentage of applied stress was being supported by the wall for each curve. For M30 and M43 here

is little variation of the slopes of these curves, indicating that the stress being supported by the wall

was a strong function propellant surface conditions, and was not sensitive to the properties of the

50 701

40' 60A

0. WO -i 50 o

30 M43 . *M30
S-0 M43

20 * = 30

1 10 ' sea% =~m =mo o . ] 0 .3 0

0.2 03 04 0.5

Porosity Prst

a. 52°C b. 23°C

Figure 13. Modulus vs Porosity for JA2, M30, and M43
(Shaded Area Indicates Values Chosen for Average)
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30 0.6-

S20
o M 30 a 520C

520clo- 0.2 23c.. 23°c
• JA2 r 3°

0 00 W , I 0.0

0 1 2 3 4 0 2 4 6 8

Grain Modulus (GPa) Applied Stress (MPa)

Figure 14. Bed Modulus vs Grain Modulus a. JA2

grains or the propellant bed. The only curve to

deviate significantly from this linear relationship .

was the low temperature JA2 beds. These beds , 0.61 ,

experienced sticking, as indicated in Figure 2c by d 1
.~0.4j a1 520Cthe nonzero applied stress with the center and 0 23C

transmitted stresses strating at zero. This would 0.21 8 -320C

occur if the ram was somehow stuck to the wail

at the start of the compaction. In Figure 15a note 0 4 6 8

that at applied stress levels of greater than 2 MPa Aprlied Stress (MPa)

the curve becomes a near straight line. This could b. V.30

indicate the response of the bed without the early 1.0

sticking. It seems that as JA2 changes dramati -,,

cally from a soft, plastic response at high tern- , "7

perature to a hard, more brittle response at low, 1 0..

less of the applied force is communicated to the 0
bed wall. At 520C, 30 percent of the applied force 0 52*C

, * ,23°C
was supported by the wall, at 23"C the support 0. 2 3

was reduced to 17 percent, and at -32°C, using 0.
0.0k-

the linear portion of the curve, the level was 0 2 4

further reduced to about 6 percent The less Applied Stress (MPa)
dramatic change in response shown by M30 and c. M43Figure 15. Difference between the Applied and

M43 curves which were much closer together. Transmitted Stress vs Applied Stress

13



The slopes of these curves range from 0.14 to about 0.18, indicating the portion of the applied stress

supported by the bed wall.

4. CONCLUSIONS

Bedcompaction tests were performed at 52'C, 23°C, and -32°C using three gun propellants, JA2,
M30 and M43. These tests provided measurements of the stress applied to the bed, the stress at the

center of the bed, the stress transmitted through the bed, and the strain. The mechanical response of

the propellants showed significant differences. JA2 showed a soft, plastic response at higher tem-

peratures and a stiffer low temperature response with little deformation and little fracture. M30

fractured at all temperatures with the high temperature response being softer with more tearing than
brittle fracture, while at lower temperatures the stiffness and brittle response increased with a
cleaving-like fracture becoming the major failure mode. M43 suffered the most &,mage at all
temperatures. At 52'C crushing and fracture occurred, and at lower temperatures oritt!eness

increased with increased fracture damage and smaller shards. As expected, the bed niodulhs
increased as temperature and porosity decreased, with significant nonlinear increases observevi for

the modulus values at low porosity for JA2.

The velocity of mechanical disturbances was calculated from response measurements andranged
between about 50mis for JA2 at low porosity and high temperature to over 300 m/s for M30 at low
temperature. Values for propellant that underwent fracture failure, such as M43, were scattered.

Meaningful velocity calculations could not be made for M43 at low temperature due to the excessive

stress fluctuation recorded during compression. These values are considerably lower than historical
values (440 m/s) that have been reported for other propellants 2 .

The communication of applied stress to the bed wall was shown to be a linear function of the
applied stress, regardless of temperature, for both M30 and M43 propellan:s. The level of stress
supported by the wall ranged between 14 and 18 percent for these prop,,llants . For JA2 the
relationship also was linear for the higher temperatures, but the level of wall support had considerably

more variation with temperature than for the other propellants, possibly due to the much greater
change of the propellant response with temperature, which resulted in a greater change in the level
of surface interaction between the grains and between the grains and the bed wall.

The stress values at the center of the bed followed the same form as the applied and transmitted

stresses, and in most cases (except for JA2 at 520C) the center stress also matched in magnitude. This
indicates that the stress across the bed is uniform to a high degree. The earlier reports9 of large stresses
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at the center were not observed here and are now believed to have resulted from a data acquisition

error.

A strong correlation was demonstrated between the bed and the single grain modulus. Other

factors such as grain and bed dimensions may play a significant role. The range of grain size was

small, so its role may not have been observed. This correlation offers the hope that bed properties

may be able to be predicted from grain properties.

5. FUTURE STUDIES

Although thes: studies have shown interesting bed responses and very useful relationships

between grain and bed response properties, predictions of bed stresses from ballistic codes indicate

that stress levels much higher than recorded here may occur within beds duing the ballistic cycle.

To achieve these higher stresses a larger machine is required. It is also desired that full scale testing

be done to eliminate potential problems with scaling these tests to the full sized bed. To achieve a

stress of 150 MPa on a 120-mam bed a force of 1.70 MN (373,000 lb) is required. Steps are being

taken to perform tests on full scale gun propellant beds using a 300 ton press at the Naval Surface

Warfare Center at White Oak.
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